Influence of glaciation on mechanisms of mineral weathering in two high Arctic catchments

Ruth S. Hindshaw a,⁎, Tim H.E. Heaton b, Eric S. Boyd c, Melody R. Lindsay c, Edward T. Tipper d

a Department of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK
b NERC Isotope Geosciences Laboratory, Nottingham, UK
c Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
d Department of Earth Sciences, University of Cambridge, Cambridge, UK

A R T I C L E I N F O

Article history:
Received 22 June 2015
Received in revised form 26 October 2015
Accepted 7 November 2015
Available online 11 November 2015

Keywords:
Chemical weathering
Pyrite
Sulphur isotopes
Bacteria
Biogeochemical cycles

A B S T R A C T

In order to investigate the effect of glaciation on mineral weathering, the stream water chemistry and the bacterial community composition were analysed in two catchments containing nominally identical sedimentary formations but which differed in the extent of glaciation. The stream waters were analysed for major ions, δ34S, δ18O SO4 and δ18O CO2 and associated stream sediments were analysed by 16S rRNA gene tagged sequencing. Sulphate comprised 72–86% and 35–45% of the summer anion budget (in meq) in the unglaciated and glaciated catchments respectively. This indicates that sulfuric acid generated from pyrite weathering is a significant weathering agent in both catchments. Based on the relative proportions of cations, sulphate and bicarbonate, the stream water chemistry of the unglaciated catchment was found to be consistent with a sulphide oxidation coupled to silicate dissolution weathering process whereas in the glaciated catchment both carbonates and silicates were weathered by both sulphuric and carbonic acids. Stable isotopic measurements of sulphate, together with inferences of metabolic processes catalysed by resident microbial communities, revealed that the pyrite oxidation reaction differed between the two catchments. No δ34S fractionation relative to pyrite was observed in the unglaciated catchment and this was interpreted to reflect pyrite oxidation under oxic conditions. In contrast, δ34S and δ18O SO4 values were positively correlated in the glaciated catchment and were positively offset from pyrite. This was interpreted to reflect pyrite oxidation under anoxic conditions with loss of S intermediates.

This study suggests that glaciation may alter stream water chemistry and the mechanism of pyrite oxidation through an interplay of biological, physical and chemical factors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Arctic is currently experiencing a period of warming, resulting in the retreat of glaciers and an increase in the active layer depth of permafrost (Vaughan et al., 2013). Major emphasis has been placed on quantifying the effects of warming on nutrient fluxes, especially carbon (e.g. Schuur et al., 2009; Elberling et al., 2013), but major ion fluxes from both permafrost and glaciated areas (MacLean et al., 1999; Frey and McClelland, 2009; Pokrovsky et al., 2012; Nowak and Hodson, 2015) are also predicted to change with continued warming. Decreased permafrost cover is expected to increase overall fluxes of solutes as the active layer deepens (MacLean et al., 1999; Frey and McClelland, 2009).

Likewise, solute fluxes from glaciers are predicted to increase by virtue of the increased discharge as a result of a longer melt season (Lafrenière and Sharp, 2005). However, it is unclear if, in addition to an increase in solute flux, the composition of this flux will change and what effect these changes will have on the carbon cycle and the microbial community which mediate many of the chemical reactions occurring in these environments (Skidmore et al., 2005; Boyd et al., 2011, 2014).

Chemical weathering, which is a key part of the biogeochemical cycles of many elements, is assumed to mainly occur by reaction with carbonic acid, formed by the dissolution of carbon dioxide (CO2) in water. However, where sulphide minerals e.g. pyrite (FeS2) exist, sulfuric acid may form through the oxidation of sulphide, which can also result in mineral dissolution (Holland, 1978). Understanding which agent is responsible for mineral dissolution is important for understanding inputs to the sulphur biogeochemical cycle and for quantifying the contribution of sulfuric acid weathering to global chemical weathering fluxes (Berner and Berner, 1996). Chemical weathering by sulfatic acid does not involve drawdown of atmospheric CO2 and can even be a net source of CO2 if carbonates are weathered. Therefore, if this reaction were significant on a global scale then the weathering-climate negative feedback would be weakened (Calmels et al., 2007; Li et al., 2008, (Torres et al., 2014)).
Sulphide oxidation coupled to carbonate dissolution (SOCD) is a key process determining stream water chemistry in the high physical erosion environment of glaciated catchments (Fairchild et al., 1999; Tranter et al., 2002; Sharp et al., 2002; Skidmore et al., 2005; Robinson et al., 2009; Wadham et al., 2010; Boyd et al., 2014). The high rates of physical erosion expose both the carbonate and pyrite grains allowing them to weather rapidly. In non-glaciated Arctic catchments, weathering is also strongly influenced by physical erosion processes such as frost shattering (Huh and Edmond, 1999; Hall et al., 2002) and where sulphide is present, sulphide oxidation is a key chemical weathering reaction (Elberling and Langdahl, 1998; Thorn et al., 2001; Calmels et al., 2007). Significant weathering by sulfuric acid is also observed in other high erosion settings such as Taiwan and the Himalayas (Wadham et al., 2004) but not in the pro-glacial area of the Ellesmere Island, Canada due to supra-glacial sulphur springs (Grasby et al., 2003) and in a sub-glacial upwelling from Finsterwalderbreen, Svalbard (Wadham et al., 2004) but not in the pro-glacial area of the same glacier (Wadham et al., 2007). However, bacterial sequencing data from other catchments has failed to detect sulphate reducing bacteria where water chemistry evidence suggested sulphate reduction was occurring (Skidmore et al., 2000, 2005). It is therefore not clear how widespread this reaction is in glaciated environments.

The chemical reactions involving sulphide oxidation and sulphate reduction are microbially mediated and it is only in the last 15 years that the diversity and functional importance of microorganisms in glacial landscapes has been recognised (e.g. Skidmore et al., 2000; Hodgson et al., 2008). More recently, it has been shown that the microbial community composition is strongly influenced by bedrock composition and that the microbial community strongly influences solute chemistry (Larouche et al., 2012; Montross et al., 2013; Mitchell et al., 2013). In particular, the presence of FeS2 was shown to be a dominant control on the composition of communities inhabiting the subglacial environment of Robertson Glacier, Canada (Mitchell et al., 2013), which likely reflects the utilisation of energy derived from mineral redox reactions to support primary productivity (Boyd et al., 2014). It is therefore probable that minerals which can serve as electron donors and acceptors play a key role in determining the composition of microbial communities, and by extension the chemical composition of solute fluxes, in other oligotrophic and obligately chemotrophic subglacial environments.

This study focusses on two adjacent catchments with nominally identical lithology: sedimentary rocks known to contain pyrite. One catchment was glaciated and the other was unglaciated and underlain by permafrost. We assume that the extent of glacial cover is the primary cause of differences in hydrology, biology and chemistry between the two catchments. The paired catchment approach provides clues to long-term changes in weathering processes induced by deglaciation. The aim of the study was to utilise the combination of stream water chemistry, S and O isotopes of sulphate, and molecular analyses of microbial community composition to investigate the formation of and the role of sulfuric acid weathering in the two catchments.

2. Description of field area

Svalbard is located in the Arctic Ocean. The archipelago has an arctic climate with a mean annual air temperature of -5 °C and mean annual precipitation of 180 mm (measured at Longyearbyen airport, Humlum et al., 2003). Permafrost is continuous throughout the islands and can be up to 500 m thick (Humlum et al., 2003). The two studied catchments are situated next to each other (Fig. 1) in the Paleogene sedimentary Central Basin of Svalbard. The sedimentary formations exposed in the catchments are from the Van Mijenfjorden group which is Paleocene to Eocene in age (66–33.9 Ma) and contain sandstones, siltstones and shale (Fig. 2, Major et al., 2000).

Dryadbreen has been retreating since the end of the Little Ice Age (~1890, Ziaja, 2001). The thermal regime of the glacier is expected to be cold-based with temperate patches, based on similar sized glaciers in the same area (Ettelmüller et al., 2000; Ettelmüller and Hagen, 2005). Between 1936 and 2006 the area of the glacier decreased from 2.59 to 0.91 km² leaving large terminal and lateral ice-cored moraines and a sandur in front of the glacier (Ziaja and Pipala, 2007). The sandur surface lowered 14 m between 2001 and 2006 due to the melting of dead ice (Ziaja and Pipala, 2007). The uppermost part of the catchment faces north–north-east and the valley then curves around such that at lower elevations (<500 m) the catchment faces south-east. The catchment area is 4.8 km² and ranges in elevation from 250 to 1031 m a.s.l. The river in the sandur plain is braided, but the braids merge such that one stream drains the end moraine. This stream was sampled just before the confluence with the river in the main valley. In this paper ‘Dryadbreen’ will be used to refer to the whole catchment and not just the glacier.

Fardalen is a non-glaciated catchment at the head of a valley of the same name. In contrast to Dryadbreen, the whole catchment has a south-easterly aspect which contributes to the absence of present-day glaciation. The valley is currently underlain by continuous permafrost and is likely to have been unglaciated for at least the last 10 kyr.

Fig. 1. Panoramic view of the two study catchments. Dryadbreen is on the left and Fardalen on the right. The red dashed line demarcates the catchment boundaries and the yellow crosses indicate the water sampling locations for each catchment. Note the large end moraine and sandur in the glaciated catchment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Photograph credit: Alix Guillot.
were acidified HDPE bottles and those intended for the analysis of cations and we therefore assume that the measured alkalinity is equivalent to approximately 1 km from the front of the glacier. Temperature and pH just before they joined the main valley river. For Dryadbreen this was the catchment and it was sampled just before the confluence with the river in the main valley.

3. Methods

3.1. Hydrology

Water stand and water temperature were recorded every 10 min by a CS450 Campbell Scientific pressure transducer connected to a Campbell CR200X data logger. In Dryadbreen conductivity was recorded every 10 min using a Ponsel CE4 meter. Water stand was converted to discharge using discharge measurements obtained by salt tracing, which were performed using a point a 1–3 kg salt. The resulting change in conductivity -70 m downstream was monitored by a Hobo U24 conductivity logger recording every second. The calibration of the conductivity meter and conversion to discharge was done following the procedure outlined in (Hudson and Fraser, 2005).

The amount of snow in May 2012 prevented installation of the loggers that early in the season, therefore high resolution hydrological data is only available for the period 25th July to 3rd August 2012. In mid-May there was no surface water and no sub-surface water was found by digging. Three weeks later, the landscape was still dominated by snow but both streams were flowing.

3.2. Collection of water samples

The Dryadbreen and Fardalen streams were sampled twice a day from 14th to 18th June 2012 and from 25th July to 3rd August 2012. The number of days sampled corresponds to approximately 20% of the melt-season (Yde and Knudsen, 2004). The two rivers were sampled just before they joined the main valley river. For Dryadbreen this was approximately 1 km from the front of the glacier. Temperature and pH were measured in situ (Hanna HI 98160 pH meter). Water samples were filtered on the day of collection through 0.2 μm nylon filters using a polycarbonate vacuum filtration unit connected to a hand pump. A filtered water sample was titrated with 3.3 mM HCl within an hour of collection and alkalinity was calculated from the titration curve using the Gran method (Stumm and Morgan, 1996). Assuming that alkalinity ≈ HCO₃⁻ + 2CO₃²⁻ and using K₁, K₂, K₃ values for 4 °C, then HCO₃⁻ comprises more than 99.9% of alkalinity for all samples and we therefore assume that the measured alkalinity is equivalent to the bicarbonate concentration. Filtered samples were stored in pre-cleaned HDPE bottles and those intended for the analysis of cations were acidified to pH 2 with single-distilled concentrated HNO₃. Sulphate was pre-concentrated by passing 3 L of filtered water through a column filled with 5 mL Dowex 1 × 8, 100–200 mesh chloride form resin. The resin was pre-cleaned by rinsing with 60 mL 3 M HCl followed by 60 mL 18.2 MΩ water. Three snow samples were taken by filling a bucket with snow and allowing it to melt at room temperature. Two rain samples were collected from an HDPE bottle with a funnel. A supra-glacial stream sample was also collected. All of these samples were filtered as described for river water samples.

3.3. Analysis of water samples

For all water samples, major cations and Si were measured by inductively-coupled plasma optical emission spectrometry (ICP-OES, Perkin Elmer Optima 5300 DV at the University of Edinburgh) and anions by ion chromatography (IC, Dionex DX 500 at Durham University). Measured cation concentrations of the water standards SLRS-5 (National Research Council Canada) and BATTLE-02 (Environment Canada) were within 8% of the certified values. Measured anion concentrations were within ±5% of the certified values for LETHBRIDG-03 and BATTLE-02 (both Environment Canada). External reproducibility, as measured by the mean normalised difference of 9 pairs of replicate field samples, was <3% for cations and <5% for anions. Calculated charge balance errors (CBE) were <3% for the vast majority of samples, confirming the accuracy of the anion and cation measurements (Table 1).

The oxygen isotopic composition (δ¹⁸O/H₂O) of water samples was measured on 750 μL samples of water which had been equilibrated with a mixture of 0.3% CO₂ and He in septum capped vials. The CO₂/He mixture was measured using a Gas Bench II (Thermo Scientific) connected to an isotope ratio mass spectrometer (IRMS, Delta PLUS XP, Thermo Scientific at the University of St. Andrews). Measurements were calibrated with the international standards SLAP-2, GISP and NBS-18. The results are reported in the conventional delta notation with respect to VSMOW and sample standard deviation was less than 0.15 (2 SD).

Sulphate from the anion resins was eluted with 2 M KCl, and the eluent acidified to pH 3 with HCl, heated to sub-boiling, and barium sulphate precipitated by addition of BaCl₂. The barium sulphate was then recovered by four cycles of centrifugation, discard of the supernatant, and washing in de-ionised water before oven drying at 80 °C. The sulphate blank for the process is less than 0.5 mg BaSO₄ (limit of determination), which is less than 1% of the smallest sample. δ³⁴S/³²S ratios were determined by combustion to SO₂ with V₂O₅ in an EA-1120 elemental analyser on-line to an IRMS (Delta + XL, Thermo Finnigan at the NERC Isotope Geosciences Laboratory), with δ³⁴S/³²S ratios calculated as δ³⁴S values versus CDT by comparison with standards IAEA SO6 and NBS-127. Analytical precision of replicates was typically ±0.2 (1 SD). δ¹⁸O/¹⁶O ratios were determined by thermal conversion to CO in a TC/
EA on-line to an IRMS (Delta + XL, ThermoFinnigan at the NERC Isotope Geosciences Laboratory), with $^{18}O/^{16}O$ ratios calculated as $\delta^{18}O_{SMOW}$ values versus SMOW by comparison with standards IAEA S05 and S06. Analytical precision of replicates was typically ± 0.5 (1 SD).

3.4. Analysis of solid samples

Three rock samples were analysed: R01 was collected from the Frysjoadden Formation (Fig. 2) in Fardalen, R02 was collected from the sandur in Drydbreden and R04 was collected from the surface of the glacier. The rock samples, in addition to a sediment sample taken at the water sampling location in each catchment (O — Drydbreden and L — Fardalen) were crushed and ground to fine powders. The rock samples were analysed by X-ray fluorescence spectrometry (XRF, PANalytical Axios at the Norwegian Geological Survey) and all samples were analysed by X-ray diffraction (XRD). S contents of the rock samples were analysed by high temperature combustion followed by infra-red detection (Leco SC-444 at the Norwegian Geological Survey). XRD analysis was performed on a PANalytical PW1050 X-ray diffractometer with a Hiltonbrooks DG2 X-ray generator (Cu-Kα radiation) at the University of St. Andrews. Data were collected between 5 and 70° 20 with a step size of 0.02° and a counting time of 3 s per step. Semi-quantitative mineralogical abundances were obtained using the Siroquant software. The typical error on abundances is estimated to be 5–10%.

Pyrite was separated from two shale samples by using a solution of lithium heteropolytungstate (LST). The separated fraction contained both pyrite and magnetite and the pyrite was separated from magnetite using a magnet and hand-picking. Pyrite separates were ground to a powder in an agate mortar and $^{34}S/^{32}S$ ratios determined by combustion to SO2 with V2O5 in an EA-1120 elemental analyser on-line to an IRMS (Delta + XL, ThermoFinnigan at the NERC Isotope Geosciences Laboratory), with $^{34}S/^{32}S$ ratios calculated as $\delta^{34}S$ values versus CDT by comparison with standards IAEA S-1 and S-2. Analytical precision of replicates was typically ± 0.4 (1 SD).

3.5. Sequencing of bacterial 16S rRNA genes

Four surface sediment samples were sequenced: two from Fardalen collected in spring at the water sampling location, L (river sediment) and M (sediment by the side of the river resting on snow) and two from Drydbreden collected in summer, A (sediment from a pool of water in the sandur, not connected to main river) and O (sediment from a sandur, not connected to main river).
adjacent to the river at water sampling location. Sediment samples were scooped directly into either sterile 300 mL PVC containers or sterile 50 mL centrifuge tubes. The samples were stored at ambient temperature (< 4 °C) until they were transported to the lab where they were desiccated by drying at 40 °C (4 days). Desiccated samples were shipped internationally to the USA where they were subjected to molecular analyses.

3.5.1. Nucleic acid extraction and quantification

DNA extraction and purification were carried out with a Fast DNA Spin Kit for Soil (MP Biomedicals, Solon, OH). DNA was extracted in triplicate from three independent 250 mg subsamples of sediment. Equal volumes of each replicate extract were pooled and the concentration of DNA was determined using a Qubit dsDNA HS Assay kit (Molecular Probes, Eugene, OR) and a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA).

3.5.2. PCR Amplification of bacterial and archaeal 16S rRNA genes from genomic DNA

Purified genomic DNA extracts were subjected to amplification of bacterial and archaeal 16S rDNA using primers 344F (5′-ACGG GGYCAGCAGCCGGCGA-3′) and 915R (5′-GGTACCTTGGTTACCT-3′) at an annealing temperature of 61 °C or 1100F (5′-AACAGCCCA AACCC-3′) and 1492R (5′-AAGCTTGGTACCTTGTTAC-3′) at an annealing temperature of 55 °C, respectively (Boyd et al., 2007). Approximately 1 ng of purified genomic DNA was subjected to PCR in triplicate using the following reaction conditions: initial denaturation at 94 °C (4 min), followed by 35 cycles denaturation at 94 °C (1 min), annealing at the optimal temperature for the primer pair (1 min), primer extension at 72 °C (1.5 min), followed by a final extension step at 72 °C for 20 min. Reactions contained 2 mM MgCl2 (Invitrogen, Carlsbad, CA), 200 μM each deoxynucleotide triphosphate (Eppendorf, Hamburg, Germany), 0.5 μM forward and reverse primer (Integrated DNA Technologies, Coralville, IA), 0.4 mg ml−1 molecular-grade bovine serum albumin (Roche, Indianapolis, IN), and 0.25 units Taq DNA polymerase (Invitrogen, Carlsbad, CA) in a final reaction volume of 50 μL. Positive control reactions were performed using genomic DNA from Azotobacter vinelandii Dj and Sulfolobus solfataricus P2. Negative control reactions were performed in the absence of added genomic DNA. PCR amplicons were only obtained from extracts when bacterial primer sets were applied. Archaeal 16S rRNA gene amplicons were not recovered from any of the four sediment DNA extracts.

3.5.3. Sequencing and analysis of bacterial 16S rRNA genes

Bacterial 16S rDNA amplicons were sequenced by Molecular Research LC (Lubbock, TX). 16S rDNA from each site were barcoded and were sequenced using a 454 Genome Sequencer FLX System. Post sequence processing was performed using the Mothur (ver. 1.33.3) sequence analysis platform (Schloss et al., 2009). Raw libraries were trimmed to a minimum length of 250 bases and were subjected to a filtering step using the quality scores file to remove sequences with anomalous base calls. Unique sequences were aligned using SILVA databases and sequences were trimmed using a defined start and end sites and a maximum length of 250 bases. The resulting unique sequences were pre-clustered to remove amplification and sequencing errors and chimeras were identified and removed usingUCHIME (Edgar et al., 2011). Operational taxonomic units (OTUs) were assigned at a sequence similarity of 0.03 using the furthest-neighbour method. The remaining sequences were randomly sub-sampled in order to normalise the total number of sequences in each library. Collectively, these steps resulted in a normalised size of 1077 bacterial 16S rRNA gene sequences for each assemblage. Sequences were classified using the Bayesian classifier (Wang et al., 2007) and the RDP database, with manual verification using BLASTn (Suppl. Table 1). Sequences representing each OTU have been deposited in the NCBI SRA database under accession number SRR1562043.

Sequences representing each unique OTU (defined at 0.03% sequence identities) were compiled for each domain. ClustalX (ver. 2.0.9, Larkin et al., 2007) was used to align nucleic acid sequences using default parameters and the alignment was subjected to evolutionary model prediction via Modeltest (ver. 2.1.1, Darriba et al., 2012), Maximum-Likelihood phylogenetic reconstruction via PhyML (version 3.0, Guindon and Gascuel, 2003) specifying the general time reversible model and gamma distributed rate variation with a proportion of invariable sites, and rate smoothing using the multidimensional version of Rambaut’s parameterization as implemented in PAUP (ver. 4.0, Swofford, 2001) as previously described (Meuser et al., 2013). Phylocom was used to calculate Rao’s community phylogenetic relatedness for the bacterial assemblages using relative sequence abundance weights and the rate-smoothed ultrametric tree. PAST (ver. 1.72, Hammer et al., 2001) was used to generate cluster dendograms specifying single linkage and Euclidean distances. Bootstrap values correspond to the frequency that each node was observed in a given position out of 1000 replicates.

3.6. Precipitation correction

Snow is the primary source of precipitation to the two studied catchments, but the chemical composition of the water derived from melting snow varies temporally (e.g. Johannessen and Henriksen, 1978). Therefore instead of using the snow samples collected for this study, which were collected relatively late in the season as a measure of precipitation inputs, we compiled literature data on pre-melt Svalbard snow-pack chemistry (Hodgkins et al., 1997; Wynn et al., 2006; Tye and Heaton, 2007; Yde et al., 2008). Pre-melt snow-pack samples are typically taken in April and are assumed to represent “fresh” snow. From these data average X/Cl ratios were calculated, without any weighting, where X is a major cation or anion. By assuming that chloride is conservative and only derived from precipitation, the stream water data are corrected for snow inputs using the following formula:

$$X^* = X_{\text{river}} - (X/Cl)_{\text{snow}} \cdot C_{\text{river}}$$

where X^* and X_{river} denote precipitation-corrected and uncorrected concentrations respectively. The X/Cl ratios used for the precipitation correction were (+15D, n = 8–10); Ca/Cl 0.11 ± 0.10, Mg/Cl 0.09 ± 0.04, Na/Cl 0.85 ± 0.09, K/Cl 0.02 ± 0.01 and SO4/Cl 0.11 ± 0.04. The propagated error on the precipitation corrected values in summer was less than 7% (RSD) for K and Na and less than 4% (RSD) for Ca, Mg and SO4. In spring, the propagated error was higher due to the greater amount of snow-melt and the error was consistently higher in spring samples and extrapolated to a δ^{34}S for the snow pack we took the percentage of SO4 derived from snow for the snow pack where SO4 was comprised of 34S from SO4 in snow (Fig. 3). The value estimated for snow using this approach was +14 which is within the range previously reported (Tye and Heaton, 2007). Using this value, δ^{34}S values were corrected using the following formula:

$$\delta^{34}S_{\text{snow}} = \frac{\delta^{34}S_{\text{river}} - (\delta^{34}S_{\text{snow}} - f \cdot \delta^{34}S_{\text{snow}})}{(1-f)}$$

where f is the fraction of SO4 from snowmelt. δ^{34}SO4 values were corrected in an identical manner to that described above for δ^{34}H2O using a snow value of +9.5 based on a fresh snow sample from Svalbard (Tye and Heaton, 2007). Unless otherwise stated, precipitation-corrected values are used in all figures in this manuscript and are indicated by an asterisk.
4. Results

4.1. Water chemistry and hydrology

The water samples taken in spring were dominated by snow-melt as evinced by the high proportion of Cl and Na compared to the summer samples (Fig. 4, Table 1). The most abundant anion in Dryadbreen was HCO$_3^-$ which comprised 48–58% of the major anions (in meq) in summer. This was in stark contrast to Fardalen where SO$_4^{2-}$ was the major anion comprising 72–86% of the major anions (in meq) in summer (Fig. 4). The precipitation corrected abundances of cations were similar in both catchments (Fig. 4). In Dryadbreen precipitation sources accounted for 34–48% of the cation abundance (in meq) in spring and 10% in summer. In Fardalen, the precipitation contribution to the cation abundance was slightly less: 19–29% in spring and 4% in summer. The abundances of Ca and Mg were very similar in both catchments but in Fardalen Mg was consistently more abundant compared to Dryadbreen where Ca was most abundant. The total dissolved load of Fardalen (53 ± 7 mg L$^{-1}$, 1 SD) was approximately double that of Dryadbreen (25 ± 4 mg L$^{-1}$, 1 SD).

The $\delta^{2}{O}_{H2O}$ value of the stream water varied from around −15 in spring to around −13 in summer (Table 1), reflecting the decrease in snow cover from spring to summer (Hindshaw et al., 2011). There is no significant difference in $\delta^{18}{H}_{2O}$ between the two catchments reflecting a common precipitation source. The sulphur isotopic composition of sulphate ($\delta^{34}S$) decreased from spring to summer: from +0.73 to −2.64 in Dryadbreen and from −3.40 to −7.66 in Fardalen (Table 1). Similar to $\delta^{34}S$ values, $\delta^{34}O_{SO4}$ exhibited a seasonal shift toward lower values in summer with the lowest value (−10.1, Table 1) measured in Fardalen.

The discharge of both streams at the time of sampling is given in Table 1. Both streams exhibit diurnal cycles in discharge and the recorded range of discharge measured in both catchments was 0.05–0.35 m3 s$^{-1}$, but the median discharge over the period of data collection for Dryadbreen (0.40 m3 s$^{-1}$) was greater than for Fardalen (0.22 m3 s$^{-1}$).

4.2. Solid samples

Based on the SandClass system for terrigenous sand and shale samples (Herron, 1988), R01 and R04 were classified as shales and R02 as a wacke (Table 3). Schlegel et al. (2013) have previously classified rock core samples from the Frysajodden Formation as shales and those from the Battjellet and Aspelintoppen formations as wackes and litharenites respectively. We therefore assume that R01 and R04 originated from the Frysajodden Formation and R02 from the Battjellet Formation (Fig. 2). The main minerals in the bulk rock and sediment samples analysed by XRD were quartz, plagioclase, chlorite, kaolinite, illite/mica and illite/smectite (Table 4). Clay minerals accounted for 44% (sediment O) to 65% (R04) of the total composition. Calcite abundance was below 1% in all samples analysed. However, calcite was detected in XRD analysis of orientated clay fractions from river sediments collected in the glaciated catchment (Dryadbreen) but not in sediments collected from the unglaciated catchment (Fardalen). The low calcite abundance is in agreement with previous studies which report <1–2% carbonate in core samples from these formations (Dypvik et al., 2011; Schlegel et al., 2013).

Pyrite was detected in the bulk phase XRD analysis of R02 (Table 4) and was separated from both R01 and R02. No gypsum was detected by XRD analysis and none was detected in thin sections from these same formations (Dypvik et al., 2011; Schlegel et al., 2013). The S content of R01 and R02 was 0.02 and 0.90 wt.% respectively. Assuming that all the S is associated bacterial communities that were submerged in the stream versus those that were collected on the banks of the stream. For example, samples M (Fardalen, sediment on snow adjacent to river) and O (Dryadbreen, sediment adjacent to river) both comprised large numbers of firmicutes, whereas the two samples collected under water (A and L) contained very low abundances of these lineages (Fig. 5b). A (Dryadbreen) and L (Fardalen) were dominated by sequences affiliated with the 16S rRNA genes recovered from the sediment samples, as determined by BLASTn analysis, are depicted in Fig. 5.

Clear differences were observed in the composition of sediment associated bacterial communities that were submerged in the stream versus those that were collected on the banks of the stream. For example, samples M (Fardalen, sediment on snow adjacent to river) and O (Dryadbreen, sediment adjacent to river) both comprised large numbers of firmicutes, whereas the two samples collected under water (A and L) contained very low abundances of these lineages (Fig. 5b). A (Dryadbreen) and L (Fardalen) were dominated by sequences affiliated
with Proteobacteria (48 and 65% of the total bacterial community, respectively) with those affiliated with Betaproteobacteria representing the most abundant proteobacterial class (21% and 31% respectively). Sequencing studies from glaciated environments have found that Betaproteobacteria are the dominant phylogenetic group in subglacial and proglacial sediments where they are likely to be involved in S and Fe cycling under oxic conditions (Foght et al., 2004; Skidmore et al., 2005; Mitchell et al., 2013).

Differences in the composition of the bacterial communities associated with sediments sampled from the two submerged sites A (Dryadbreen) and L (Fardalen) were also apparent. For example, sequences affiliated with the anaerobic phylum Bacteriodetes represented only a minor fraction of the community (3%) from Fardalen (L), whereas Betaproteobacteria represented only a minor fraction of the community sampled from Dryadbreen (A), whereas Bacteriodetes represented only a minor fraction of the community (3%) from Fardalen (L). This may indicate a shift toward more anaerobic metabolisms in the proglacial sediment associated with sediments sampled from the two submerged sites A (Dryadbreen) and L (Fardalen) were also apparent. For example, sequences affiliated with the anaerobic phylum Bacteriodetes represented only a minor fraction of the community (3%) from Fardalen (L), whereas Betaproteobacteria represented only a minor fraction of the community (3%) from Fardalen (L). This may indicate a shift toward more anaerobic metabolisms in the proglacial sediment communities at Dryadbreen.

In the discussion we will focus on sediment samples A and L as representative of each catchment since they were collected under water and therefore are most likely to be adapted to or responsible for the differences in water chemistry observed between the two catchments.

5. Discussion

5.1. Overall weathering reactions

The most obvious difference between the two streams is in the anion composition: Dryadbreen is dominated by HCO$_3^-$, whereas Fardalen is dominated by SO$_4^{2-}$. This indicates that different weathering reactions are occurring in the two catchments despite nominally identical lithology. A first indication of which weathering reactions are important for each catchment can be gained by looking at element ratios since the reactions of carbonates and silicates with either carbonic or sulfuric acids will give distinct ratios of cations versus SO$_4^{2-}$ and HCO$_3^-$ (Fairchild et al., 1994; Tranter et al., 2002; Wadham et al., 2010). Example reactions and their corresponding slopes in units of equivalents (eq) are presented below (Eqs. (3)–(6b)) and in Table 6. Feldspars are the primary silicate minerals in these rocks and although feldspars are a compositional solid solution between CaAl$_2$Si$_2$O$_8$, NaAlSi$_3$O$_8$ and KAlSi$_3$O$_8$, the variation in composition does not affect the ratio (in equivalents) of the product cation (Na$^+$, K$^+$, Ca$^{2+}$) to either the HCO$_3^-$ or the SO$_4^{2-}$ produced (cf. Eqs. (5a), (5b), (6a) and (6b)). Analogous equations can be written for the main Mg-bearing silicate phases: illite [(Al,Mg,Fe)$_2$(Si,Al)$_4$O$_{{10}}$(OH)$_2$] and chlorite [(Mg,Fe)$_3$(Si,Al)$_4$O$_{{10}}$] (Table 4). In addition to mineral weathering, the oxidation of organic matter will produce HCO$_3^-$, and this reaction, which is expected to occur in these permafrost-dominated catchments, is represented by Eq. (7).

Carbonate dissolution with carbonic acid (CDC)

\[
Ca_{1-x}(Mg_x)CO_3(s) + CO_2(aq) + H_2O(l) = (1-x)Ca^{2+}(aq) + xMg^{2+}(aq) + 2HCO_3^-(aq)
\]

(3)

Aerobic sulfide oxidation coupled to carbonate dissolution (SOCD)

\[
16Ca_{1-x}(Mg_x)CO_3(s) + 4FeS_2(s) + 15O_2(aq) + 14H_2O(l) = 16(1-x)Ca^{2+}(aq) + 16xMg^{2+}(aq) + 16HCO_3^-(aq) + 8SO_4^{2-}(aq) + 4Fe(OH)_3(s)
\]

(4a)

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Classa</th>
<th>Fm.b</th>
<th>SiO$_2$ wt.%</th>
<th>Al$_2$O$_3$ wt.%</th>
<th>Fe$_2$O$_3$ wt.%</th>
<th>TiO$_2$ wt.%</th>
<th>MgO wt.%</th>
<th>CaO wt.%</th>
<th>Na$_2$O wt.%</th>
<th>K$_2$O wt.%</th>
<th>MnO wt.%</th>
<th>P$_2$O$_5$ wt.%</th>
<th>LOIc wt.%</th>
<th>Total wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R01</td>
<td>Shale</td>
<td>Fry.</td>
<td>63.2</td>
<td>16.3</td>
<td>7.1</td>
<td>0.8</td>
<td>1.4</td>
<td>0.3</td>
<td>1.0</td>
<td>2.6</td>
<td>0.1</td>
<td>0.3</td>
<td>7.5</td>
<td>101.0</td>
</tr>
<tr>
<td>R02</td>
<td>Wacke</td>
<td>Batt.</td>
<td>65.4</td>
<td>13.0</td>
<td>7.9</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>0.7</td>
<td>2.2</td>
<td>0.1</td>
<td>0.3</td>
<td>7.2</td>
<td>99.5</td>
</tr>
<tr>
<td>R04</td>
<td>Shale</td>
<td>Fry.</td>
<td>57.1</td>
<td>19.1</td>
<td>3.5</td>
<td>0.9</td>
<td>1.3</td>
<td>0.2</td>
<td>0.6</td>
<td>3.6</td>
<td>0.0</td>
<td>0.1</td>
<td>12.9</td>
<td>99.3</td>
</tr>
</tbody>
</table>

a Classification using SandClass for terrigenous sands and shales (Herron, 1988).

b Formation assignment based on (Schlegel et al., 2013). Fry. = Frysjaodden Formation and Batt. = Battfjellet Formation.

c LOI = loss on ignition.
icate weathering (SOSD, Eqs.(6a) and (6b)). The intercept of this line is the slope which would be expected by sulphide oxidation coupled to silicate dissolution process. Although it is not possible to quantify the relative importance of each of total cations versus SO4

If only silicate minerals were weathering in the glaciated catchment (Dryadbreen) then the slopes of the data in Fig. 6a and b, which lie intermediate between SOSD (Eqs. (6a) and (6b)) and SDC (Eqs. (5a) and (5b)), would suggest that silicates are weathered by both carbonic and sulfuric acid. However, if it were assumed that all the Ca and Mg came from carbonates then the data points would also be consistent with carbonate weathering by sulfuric and carbonic acids (Fig. 6c and d). In summary, the data from Dryadbreen suggests that all four reactions are occurring i.e. weathering of both silicates and carbonates by both carbonic and sulfuric acid and further data from, for example, δ13CDIC and 87Sr/86Sr, would be needed to constrain the relative proportions of the different reactions.

The high proportion of silicate weathering in the unglaciated catchment is likely due to the presence of the active layer (the seasonally thawed top layer of soil above permafrost). If, over a long enough period, the active layer has remained at a constant depth, this would mean that despite frost-shattering exposing fresh mineral surfaces, the vast majority of carbonate phases will have already been leached, leaving behind the silicate minerals to weather. This is in agreement with the lack of carbonate detected by XRD in the orientated clay fractions of solid samples from Fardalen (Section 4.2). However, if the active layer deepens through a warming climate then fresh carbonates could become exposed (Keller et al., 2010). In contrast, high rates of physical erosion still occur in the glaciated catchment exposing carbonates to chemical weathering.

The nature of the weathering reactions in the glaciated catchment is in agreement with the conclusions of (Tranter et al., 2002) who identified sulphide oxidation and Fe(III) reduction as key reactions in subglacial environments. The importance of sulphide oxidation reactions is also apparent in high-latitude unglaciated, permafrost dominated catchments (Fig. 6). This is in contrast to low-latitude, unglaciated catchments where weathering reactions are mainly driven by reaction with CO2 either from respiration or from the atmosphere (Tranter et al., 2002).

Although the information in Fig. 6 provides an overview of the weathering reactions occurring in each catchment, further processes may modify these broad interpretations. Firstly, it is assumed that reactions have idealised stoichiometry and secondly, reactions removing solutes are not considered. The latter point is especially critical in subglacial environments where carbonate precipitation and sulphate reduction can occur (Wadham et al., 2004). Carbonate precipitation would decrease Ca2+ and HCO3− whereas sulphate reduction would decrease SO42-. All water samples were undersaturated with respect to calcite and we therefore assume that carbonate precipitation did not have a significant impact on the stream water chemistry. In the following section we utilise the fact that the isotopes of sulphate (δ34S and δ18Oso4) are fractionated during reduction and can therefore be used to assess whether sulphate reduction is occurring and under what conditions.

5.2. Oxic or anoxic weathering conditions?

Sulphate reduction only occurs under anoxic conditions and previous studies have distinguished between aerobic and anaerobic environments based on the source of O atoms in sulphate (e.g. Bottrell and Tranter, 2002; Wadham et al., 2004). There are two main sources of oxygen: atmospheric O2 and aqueous oxygen (H2O) and each has a distinct isotopic composition.

During the oxidation of sulphide to sulphate the exchange of oxygen atoms in the intermediate molecules is very rapid but once sulphate has formed then exchange is negligible (Lloyd, 1968). Previously it has been assumed that if more than 75% of the O atoms in sulphate derive from water then the pyrite was oxidised under anaoxic conditions and less than 75% implied oxidation under oxic conditions (Taylor et al., 1984; van Everdingen and Krouse, 1985). The fraction of O atoms in sulphate
derived from atmospheric O₂ or water can be calculated as follows (Balci et al., 2007):

\[
\delta^{18}O_{SO_4} = x \left(\delta^{18}O_{H_2O} + \epsilon^{18}O_{SO_4-H_2O} \right) + (1-x)
\]

where \(x\) is the fraction of O atoms derived from H₂O and \(\epsilon\) is the fractionation factor. When this principle was applied to glaciated catchments it was found that FeS₂ oxidation in subglacial environments proceeded primarily under anoxic conditions (Bottrell and Tranter, 2002; Wadham et al., 2004, 2007; Wynn et al., 2006). However, recent studies have questioned the utility of \(\delta^{18}O_{SO_4}\) isotope analysis in distinguishing between oxic and anoxic conditions. These studies (Usher et al., 2004, 2005; Chandra and Gerson, 2011) found that even in solutions containing dissolved O₂ the vast majority of the oxygen atoms in sulphate derive from water because water outcompetes O₂ for adsorption sites. The percentage of oxygen atoms derived from water can therefore not be used to assess whether anoxic conditions are present or not during the oxidation of sulphide.

The bacterial sequencing data can, however, be used to gain a rough idea of the redox status of the two catchments. The samples from Dryadbreen were collected in summer whilst those from Fardalen were collected in spring and therefore may not be directly comparable as a result of seasonal variation in the microbial community composition (Crump et al., 2009; Schostag et al., 2015). However, a study on seasonal variations in the microbial community composition in soils found that the relative abundance of most phyla was constant over a year (Schostag et al., 2015). In addition, Arctic stream microbial community compositions were found to be strongly correlated with inorganic stream water chemistry (Crump et al., 2009) and given that there is more variation in relative ion proportions between the catchments than between the seasons (Fig. 6), we assume limited seasonal variability in the microbial community compositions for the purposes of this discussion.

Some bacteria only live in anaerobic environments and therefore their presence can be used as an indication that anoxic conditions are present. In both catchments, we found evidence for both anaerobic and aerobic bacteria in the under-water sites (A and L) suggesting that anoxic micro-niches exist in the aqueous system. Sequences affiliated with Thiobacillus, a facultative aerobe capable of oxidising iron and sulphur compounds was represented in both catchments (Table 7). It is likely that Thiobacillus is involved in the aerobic oxidation of pyrite and as a result may help establish anoxic conditions. However, the Deltaproteobacteria class of bacteria, which consists of numerous lithothrophic anaerobes (Kuever et al., 2005), was strongly represented in Dryadbreen (glaciated, Site A, 10.3%) but was nearly absent in Fardalen (unglaciated, Site L, 0.1%) (Fig. 5), suggesting that anoxic conditions may be more prevalent in the glaciated catchment and that iron reduction may be an important process. In support of this notion, a number of genera capable of reducing iron compounds were identified (Table 7). For example, 8.1% and 2.9% of the sequences from Dryadbreen (A) were closely affiliated with Geobacter (obligate anaerobe, Lovley, 2000) and Rhodoferax (facultative anaerobe, Finneran et al., 2003) respectively (Table 7). Anoxia may be more prevalent in the glaciated catchment due to the sandur, which is a large wet area covered by fine glacial flour, conditions which would favour pyrite oxidation and the development of anoxia, analogous to marine sediments (e.g. Buridges, 1993). Additionally, the sandur is underlain by ice (Ziaja and Pipala, 2007) which could be hydraulically linked to the subglacial drainage system providing a pathway for anoxic subglacial meltwater to enter the stream downstream of the apparent glacier front (Irvine-Fynn et al., 2011). In the unglaciated catchment, the aforementioned processes are not relevant. Although the deeper permafrost areas will be anoxic, they may not have a strong hydraulic connection to the stream, resulting in a stream which is dominantly oxic.

Table 6

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Predicted slope (in eq)</th>
<th>Ca²⁺ + Mg²⁺ vs SO₄²⁻</th>
<th>Ca²⁺ + Mg²⁺ vs HCO₃⁻</th>
<th>Total cations</th>
<th>Total cations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate + H₂CO₃ (Eq. (3))</td>
<td>≈1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Carbonate + H₂SO₄ (Eqs. (4a), (4b))</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Silicate + H₂CO₃ (Eqs. (5a), (5b))</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Silicate + H₂SO₄ (Eqs. (6a), (6b))</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Observed slope

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Predicted slope</th>
<th>Predicted slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryadbreen</td>
<td>1.54±0.14</td>
<td>1.48±0.29</td>
</tr>
<tr>
<td>Fardalen</td>
<td>0.88±0.04</td>
<td>6.68±2.10</td>
</tr>
</tbody>
</table>

5.3. Sulphur isotope fractionation: oxidation or reduction?

Sulphate reduction only occurs in anaerobic environments and in low-temperature natural systems it is biologically mediated (Seal, 2006). During sulphate reduction both \(\delta^{34}S\) and \(\delta^{18}O_{SO_4}\) values in the
remaining SO₂⁻ will increase as the light isotope is the preferred reactant. A positive correlation between δ³⁴S and δ¹⁸OSO₄ has therefore been proposed as diagnostic of sulphate reduction (e.g. Mandernack et al., 2003).

The spring δ³⁴S values from both catchments have similar δ³⁴S values that are within error of one of the measured pyrite mineral separates suggesting that no sulphate reduction has occurred (Fig. 7). The summer δ³⁴S values from Fardalen are about 3 lighter in δ³⁴S compared to the spring values from both catchments (Fig. 6).

Table 7

<table>
<thead>
<tr>
<th>Phylum/Class</th>
<th>Order</th>
<th>Genera</th>
<th>A</th>
<th>O</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces Fe(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidobacteria</td>
<td>Holophagales</td>
<td>Geothrix</td>
<td>1.9</td>
<td>0.4</td>
<td>0.5</td>
<td>7.9</td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Burkholderiales</td>
<td>Abidiferax</td>
<td>0.6</td>
<td>1.1</td>
<td>0.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Burkholderiales</td>
<td>Rhodoferax ferrireducens</td>
<td>2.9</td>
<td>4.1</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Deltaproteobacteria</td>
<td>Desulfuromonadales</td>
<td>Geobacter</td>
<td>8.1</td>
<td>1.8</td>
<td>0.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Oxidises Fe(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Ferritrophicales</td>
<td>Ferritrophicum radicola</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Gallionellales</td>
<td>Sideroxydans lithothrophicus</td>
<td>0.6</td>
<td>1.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Hydrogenophilales</td>
<td>Thiobacteriobius</td>
<td>5.9</td>
<td>0.1</td>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Oxidises reduced S compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Burkholderiales</td>
<td>Thiobacter subterraneus</td>
<td>0.0</td>
<td>0.1</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Hydrogenophilales</td>
<td>Sulphuricella</td>
<td>0.9</td>
<td>0.0</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Betaproteobacteria</td>
<td>Hydrogenophilales</td>
<td>Thiobacteriobius</td>
<td>5.9</td>
<td>0.1</td>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Gammaproteobacteria</td>
<td>Chromatiales</td>
<td>Halothiobacillus neapolitanus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Gammaproteobacteria</td>
<td>Chromatiales</td>
<td>Thioalkalivibrio versutus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Gammaproteobacteria</td>
<td>Chromatiales</td>
<td>Thiocapsa machilipatnamensis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Reduces sulphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltaproteobacteria</td>
<td>Desulfobacterales</td>
<td>Desulfateriella</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Deltaproteobacteria</td>
<td>Desulfobacterales</td>
<td>Desulfobulbus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Deltaproteobacteria</td>
<td>Desulfobacterales</td>
<td>Unclassified</td>
<td>0.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>Clostridiales</td>
<td>Desulfospirillum</td>
<td>0.3</td>
<td>0.6</td>
<td>0.0</td>
<td>5.2</td>
</tr>
</tbody>
</table>

The spring δ³⁴S values from both catchments have similar δ³⁴S values that are within error of one of the measured pyrite mineral separates suggesting that no sulphate reduction has occurred (Fig. 7). The summer δ³⁴S values from Fardalen are about 3 lighter in δ³⁴S compared to the spring values from both catchments (Fig. 6).
to the spring points but have the same isotopic composition as one of the measured pyrite mineral separates, again suggesting the absence of sulphate reduction. The apparent shift in the inferred source pyrite $\delta^{34}S$ value could be due to differences in pyrite $\delta^{34}S$ values between the different formations (Table 5): waters in spring could predominantly drain the Frystaajoden Formation whereas waters in summer could access formations higher up in the catchment (e.g. Battfjellet) as the snow pack retreats. However, the summer $\delta^{34}S$ values from Dryadbreen are heavier in $\delta^{34}S$ compared to both measured and inferred pyrite compositions and, additionally, there is also a significant positive correlation between $\Delta^{18}O_{SO_4}$ and $\delta^{34}S$ ($R^2 = 0.99$, $p < 0.001$, $m = 6 \pm 1$) which is suggestive of sulphate reduction (Mandernack et al., 2003; Turchyn et al., 2013). $\Delta^{18}O_{SO_4}$ is used instead of $\delta^{34}SO_4$ in order to remove the effect on $\delta^{34}SO_4$ of the temporal variation in $\delta^{18}O_{H_2O}$. The gradient of the slope between $\delta^{18}O_{SO_4}$ and $\delta^{34}S$ is thought to give information on reaction pathways. Oxygen isotope variations during reduction are thought to be controlled by a combination of intra-cellular isotope exchange between intermediate sulphur compounds and ambient water (Brunner et al., 2005; Farquhar et al., 2008) and kinetic fractionation at the cell level (Aharon and Fu, 2000; Mandernack et al., 2003). The balance between exchange and kinetic isotope fractionation is dependent on the overall reaction rate. Thus, the exact slope of $\delta^{18}O_{SO_4}$ versus $\delta^{34}S$ depends on which microbial species mediate the reaction and the forward and backward reaction rates (Aharon and Fu, 2000; Mandernack et al., 2003; Kleikemper et al., 2004; Turchyn et al., 2010; Wanke et al., 2014). The slope of $\Delta^{18}O_{SO_4}$ versus $\delta^{34}S$ from Fig. 7 is 6 which would indicate a slow reaction rate (Brunner et al., 2005).

However, if significant sulphate reduction was occurring in Dryadbreen then appreciable amounts of sulphate reducing bacteria would have been expected to be detected using molecular analysis. In the sediment sample (A), only 0.4% of the bacteria were inferred to have the capacity to reduce sulphate. In addition, attempts to amplify the gene encoding a fragment of the alpha and beta subunit of the bisulphate reductase (dsrAB, a biomarker for sulphate reduction, Wagner et al., 1998) were not successful in any of the four sediment samples despite 40 cycles of PCR (data not shown). This supports the notion that the observed sulphur isotope fractionation was not due to sulphate reduction.

It is generally assumed that negligible sulphur isotope fractionation occurs during pyrite oxidation, however fractionation can occur under certain conditions. Several biotic and abiotic experiments under anoxic and oxidic conditions have observed $\delta^{34}SO_4$-pyrite with values between 1.3 and +3.5‰ (Balic et al., 2007; Pisapia et al., 2007; Brunner et al., 2008). The difference between pyrite and sulphate in the Dryadbreen summer samples is $\Delta^{34}S$pyrite-sulphate = +2.2 to +4.8, depending on which value for $\delta^{34}S$-sulphate is used (Table 5). Positive values, of similar magnitude ($\delta^{34}S$-sulphate = +3.5 and +0.4) have previously been reported for the initial, non-stoichiometric stages of pyrite oxidation (Pisapia et al., 2007; Brunner et al., 2008). Non-stoichiometric reaction pathways are expected to occur in areas of significant physical erosion e.g. glaciated catchments, as material is removed before reactions are completed (kinetic limitation, Stallard and Edmond, 1983). Positive values of $\delta^{34}S$-sulphate have been attributed to heightened loss of SO$_4$ in the early stages of the reaction and the breaking of thiosulphate S–S covalent bonds (Pisapia et al., 2007; Brunner et al., 2008). Degassing of SO$_2$ is likely under acidic conditions, but the pH of this river is around 6.5 (Table 1), suggesting that this mechanism of fractionation is likely to be minor. Similarly, the fractionation of O isotopes in sulphate can occur when sulphite species are present, allowing oxygen isotope exchange with water, enriching sulphite, and ultimately sulphate, with ^{18}O (Brunner et al., 2008). The $\Delta^{18}O_{SO_4}$-water values from Dryadbreen summer samples (+3.0 to +5.4) are in agreement with $\delta^{18}O_{SO_4}$-water data from pyrite oxidation experiments (+2.8 to +16, (Balic et al., 2007; Pisapia et al., 2007; Brunner et al., 2008). In conclusion, sulphate enriched in both ^{34}S and ^{18}O, as observed in Dryadbreen, does not necessarily imply sulphate reduction and can be adequately explained as a result of non-stoichiometric reaction pathways during the oxidation of pyrite.

In Dryadbreen (site A) 21.7% of the bacteria (collected in summer) are inferred to be involved in Fe and S cycling reactions and 13.5% are inferred to have the ability to reduce Fe(III) e.g. Geobacter and Rhodoferax (Table 7). Given that pyrite is likely the main source of iron in the system, the obligate anaerobic nature of Geobacter and the facultative anaerobic nature of Rhodoferax, are suggestive of the presence and potential importance of anoxic portions of the catchment where the ‘anoxic’ pyrite oxidation pathway may occur (Eq. 4b), note that this pathway can also occur where oxygen is present e.g. (Balic et al., 2007). The pH of the water is circumneutral, likely due to the buffering capacity of calcite dissolution, and at this pH Fe can be cyclically oxidised and reduced (Moses and Herman, 1991) accounting for the presence of bacteria associated with both Fe reduction and Fe oxidation. It is also possible for other compounds to act as the electron acceptor in pyrite reduction such as NO$_3$ and MnO$_2$, and it is likely that all will be involved in pyrite oxidation to some extent if they are available in the system (e.g. Burdige and Nealson, 1986; Jørgensen et al., 2009). Indeed, an abundant component of the microbial community identified at Site A (Dryadbreen) is Thiobacillus (Table 7) which can couple Fe$_2$O$_3$ reduction with NO$_3$-reduction (Bosch et al., 2012). Therefore, the presence of the above-mentioned bacteria indicates that the non-stoichiometric reaction pathway, identified as being responsible for the observed change in $\delta^{34}S$ and $\delta^{18}O_{SO_4}$ values, most likely occurs under anoxic conditions and involves the reduction of Fe. In Fardalen (site F) the bacteria involved in Fe and S cycling are associated with oxidation of Fe and reduced S compounds, with a much lower fraction (~1%) inferred to be involved in Fe reduction. This corroborates the inference of pyrite oxidation under oxidic conditions and isotopic fractionation of S and O in sulphate is not observed due to the complete conversion of sulphide to sulphate (Seal, 2006).

Wider implications

The isotopic and concentration data suggest that in the unglaciated catchment, mineral dissolution occurs mainly by reaction with sulphuric acid. In the glaciated catchment the balance between sulphuric acid and carbonic acid is more even, but due to the non-stoichiometric conversion of pyrite to sulphate (loss of intermediate S compounds) as indicated by the stable isotope data, weathering by sulphuric acid may be underestimated. This indicates that sulphuric acid weathering is not only important in glaciated catchments (e.g. Wadham et al., 2010) but
also in permafrost dominated catchments (Nowak and Hodson, 2015) and could therefore be a widespread phenomenon throughout the permafrost zone where shale exists (approximately 46% of the land draining into the Arctic Ocean, (Amiotte Suchet et al., 2003). Indeed, data from the Mackenzie River, the fourth largest Arctic river by discharge and with extensive shale and permafrost areas, demonstrates the significant contribution of sulfuric acid weathering (Calmels et al., 2007). Quantification of the contribution of sulfuric acid weathering on a global scale is necessary because, if significant, it weakens the climate-weathering negative feedback because if allows cations to be released without accompanying bicarbonate in the case of silicates and the release of bicarbonate without uptake of atmospheric CO2 in the case of carbonates (Calmels et al., 2007; Li et al., 2008; Torres et al., 2014).

7. Conclusions

The presence of a glacier appeared to alter both the bacterial community composition and chemical weathering reactions in a sedimentary catchment containing pyrite in Svallbard, compared to a neighbouring unglaciated catchment. The dominant anion in the unglaciated catchment was SO$_4^{−}$ whereas in the glaciated catchment the dominant anion was HCO$_3^{−}$. The difference in major anion composition was attributed to differences in the chemical weathering reactions occurring in both catchments: silicate weathering by sulfuric acid in the unglaciated catchment and carbonate and silicate weathering by carbonic and sulfurous acids in the glaciated catchment. We speculate that the high erosion rates in the glaciated catchment continually expose carbonate minerals whereas carbonate has already been leached from the permafrost active layer in the unglaciated catchment.

 Sulphide oxidation was a key process generating acidity in both catchments but this reaction appeared to occur by different mechanisms in each catchment. In the unglaciated catchment, the $δ^{34}$S values of stream water were identical to those measured in pyrite and, together with the bacterial community composition, this suggested that pyrite oxidation occurred under oxic conditions. A seasonal shift in the absolute $δ^{34}$S value of stream water was attributed to the draining of different sedimentary formations. In the glaciated catchment, the summer $δ^{34}$S values were positively correlated to $δ^{18}$O$_{SO4}$, suggesting sulphate reduction. However, this process is microbially mediated and a biomarker for sulphate reduction (dsrAB genes) was not detected in stream sediments. Instead, the bacterial composition is consistent with fractionation due to sulphide oxidation under anoxic conditions with loss of sulphur intermediates, inducing isotopic fractionation in S between sulphide and sulphate. The presence of bacteria associated with iron redox cycling suggests the involvement of Fe$^{3+}$ as an electron acceptor in this environment.

As the local environment changes due to deglaciation and permafrost thaw, the bacterial community is expected to change in response. As a result, microbial mediated reactions, such as those involving sulphur compounds, will be affected. Thus, changes in the solute composition of streams can be expected as a result of continued warming in the Arctic.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2015.11.004.

Acknowledgements

This project was funded by a Swiss National Science Foundation fellowship for prospective researchers PBZP2-137335 and a Marie Curie Intra-European Fellowship (PIEF-GA-2012-31501) to RSH. Fieldwork was supported by an Arctic Field Grant 219165/E10 (The Research Council of Norway) to RSH. ESB acknowledges support for this work from NASA (NNAI58802A and NNAI3A994A). We wish to thank the late Kjell Mork for generously helping with this project by loaning his hunting cabin, thereby saving us from polar bear watch every night; Samuel Faucherre and Liam Harrap for taking in food and equipment by snowmobile; Spitsbergen Travel bringing the samples back from the field and posting them on; Alik Guillot, Adrian Flynn, Marita Danielsen, Andrea Viseth, Kjetil Halvorsen and Thorstein Viseth for help and company in the field, Wieslaw Ziaja for insights into the glacial history of Dryadbreen and Angus Calder for help with the pyrite mineral separation, XRD analysis and processing the XRD data for mineral abundances. We thank the four reviewers for their comments which have helped to considerably improve this manuscript.

References

Etzelmüller, B., Ødegård, R.S., Vatne, C., Mysterud, R.S., Tonning, T., Solliid, J.L., 2000. Glacier characteristics and sediment transfer system of Longyearbreen and Larsehre,

