Capture of high-altitude precipitation by a low-altitude Eocene lake, western U.S.

Alan R. Carroll1, Amalia C. Doebbert1, Amanda L. Booth2, C. Page Chamberlain3, Meredith K. Rhodes-Carson4, M. Elliot Smith5, Clark M. Johnson1, Brian L. Beard1

1Department of Geology and Geophysics, University of Wisconsin, 1215 W. Dayton Street, Madison, Wisconsin 53706, USA
2Department of Geology and Geophysics, University of Alaska, P.O. Box 755780, Fairbanks, Alaska 99775, USA
3Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA
4BP America, 501 Westlake Park Boulevard, Houston, Texas 77079, USA
5Department of Geology, Sonoma State University, 1801 E. Cotati Avenue, Rohnert Park, California 94928, USA

ABSTRACT

Sedimentary facies of the Eocene Green River Formation reflect a rapid increase in water supply to Lake Gosiute ca. 49 Ma, marked by a stratigraphic fill-to-spill surface. Deposits below this surface constitute repetitive lacustrine expansion-desiccation cycles, whereas those above consist of continuous profound lacustrine mudstone, grading upward into volcanioclastic deltaic sandstone. Above the fill-to-spill surface, calcitic mudstone δ18O decreases from ~+26‰ to +20‰ over an interval representing ~100 k.y. We interpret this shift to have resulted from capture of a foreland river (or rivers) that drained higher topography north of Lake Gosiute, most likely in north-central Idaho. Accurate paleoaltimetry estimates derived from stable isotopic records in intermontane basins thus may require detailed knowledge of regional drainage systems.

Keywords: Green River Formation, drainage, lacustrine, carbonate, Laramide, paleoaltimetry.

INTRODUCTION

Numerous studies have used oxygen isotope ratios (δ18O) in authigenic minerals to infer changes in meteoric water isotopic composition, which may reflect uplift-induced perturbations in atmospheric circulation and isotopic fractionation with increased elevation (e.g., Quade et al., 1989; Chamberlain and Poage, 2000; Poage and Chamberlain, 2001; Rowley et al., 2001). However, foreland rivers commonly carry meteoric water hundreds of kilometers from its point of origin. Rivers fed by precipitation at relatively high elevations may therefore exert a significant influence on the isotopic record of distant foreland lakes at lower elevations.

The Laramide basins of the western U.S. provide an ideal place to test this hypothesis. Carbonate-rich lacustrine deposits of the Green River Formation are widespread in several basins, and span ~10 m.y. of the early to middle Eocene. The stratigraphy, geochronology, and drainage relationships between these basins are relatively well documented (e.g., Surdam and Stanley, 1980; Dickinson et al., 1988; Roehler, 1992; Rhodes et al., 2002; Smith et al., 2003, 2008). However, the Eocene elevation of adjacent Laramide uplifts is more controversial; debate is focused on the interpretation of basinal δ18O records (Norris et al., 1996, 2000; Dettman and Lohmann, 2000; Morrill and Koch, 2002; Fricke, 2003). This study is the first to examine the potential influence of drainage not only from basin-bounding uplifts, but also from transport of water from more distant, extrabasinal sources.

LAKE GOSIUTE FILL-TO-SPILL SURFACE

The LaClede Bed of the Green River Formation (Roehler, 1992) was deposited across the greater Green River Basin by Eocene Lake Gosiute (Fig. 1). It is dominated by autochthonous lacustrine carbonate facies, with minimal reworked carbonate detritus. The lower LaClede Bed is characterized by 1–5-m-thick facies successions recording repeated expansion and desiccation of Lake Gosiute (Surdam and Stanley, 1979; Fig. 2). These cycles commonly include a basal algal stromatolite or other shallow
lacustrine facies, then grade upward into laminated, organic-rich dolomite or calcitic mudstone, representing profound deposition. Dolomite and mudcracks increase near the tops of cycles, sometimes in association with evaporite minerals or mineral casts. There are 10–11 cycles below an ~10 m dolomitic siltstone bed named the “buff marker” by Roehler (1992; Rhodes et al., 2007). Two to three additional stromatolite-bearing cycles ~10 m dolomitic siltstone are present above the buff marker.

A conformable, regionally mappable fill-to-spill surface separates the lower and upper LaClede beds, and marks a permanent increase in average net water supply to Lake Gosiute. Strata above this surface record a lake that was continuously filled to its sill level, and likely continuously overflowed. Lake expansion-contraction cycles, mudcracks, and evaporite minerals are absent. Facies consist primarily of laminated to massive organic-rich calcitic mudstone that contains freshwater molluscs. The upper LaClede Bed grades laterally and upward into dolomitic siltstone and volcaniclastic siltstone and sandstone facies of the Sand Butte Bed. Volcaniclastic deltaic progressively filled the Bridger through Washakie Basin to the south (Surdam and Stanley, 1980; Smith et al., 2008).

DISCUSSION

Several lines of evidence indicate that the decrease in δ18O recorded within the LaClede Bed reflects a change in the composition of Lake Gosiute, rather than an artifact of later diagenesis. Textural evidence for mudstone alteration is absent, and 100-μm-scale primary lamination is commonly preserved. Similar δ18O and 87Sr/86Sr records occur at locations at least 32 km apart, and lower LaClede Bed cycles preserve large variations in 87Sr/86Sr that are directly related to decimeter- to meter-scale facies patterns (Rhodes et al., 2002; Fig. 2). Upper LaClede Bed mudstone δ18O is nearly identical to that in aragonitic unionid bivalves collected from equivalent rocks north of Manila, Utah (Morrill and Koch, 2002; C. Morrill, 2006, personal commun.; Figs. 1 and 2). Molluscs are absent in the lower LaClede Bed, but alteration would generally be expected to produce lower δ18O (cf. Morrill and Koch, 2002; Fricke, 2003), in conflict with the relatively high measured values.

One possible explanation for the decrease in Lake Gosiute δ18O is a change in the source of regional air masses that produced precipitation, although there is no direct evidence for this. Alternatively, regional climate could have shifted toward wetter conditions. A ~5% change in the lake would require an ~4× increase in precipitation (cf. Rozanski et al., 1993), an ~50% decrease in evaporation (based on our mass balance...
modeling; see following), or some combination of these factors. However, paleobotanical analyses of Green River Formation flora indicate no significant change in mean annual precipitation between deposition of the Little Mountain flora (ca. 50 Ma, Wyoming) and the Bonanza flora (ca. 47 Ma, Utah), although these studies do suggest that mean annual temperatures decreased 4–5 °C (Wing and Greenwood, 1993; Wilf et al., 1998; Wilf, 2000). Atmospheric processes do not fractionate Sr, although changes in 87Sr/86Sr could be related to climatically induced spillage from upstream basins into Lake Gosiute (Rhodes et al., 2002). However, recent 40Ar/39Ar dating of Green River Formation tuffs demonstrates that the apparent shift toward wetter conditions recorded by the LaClede Bed coincided with an opposite shift, toward long-term evaporative conditions represented by the Mahogany zone, in the nearby Uinta Basin (Smith et al., 2008). It is very unlikely that regional climate change produced both of these facies shifts simultaneously.

An alternative and more plausible hypothesis is that Lake Gosiute captured a river with relatively low δ18O water. To further evaluate we constructed a mass balance using paleobotanical climate values of the Little Mountain flora (for model details see the Appendix in the GSA Data Repository1). In the initial model condition, Lake Gosiute exactly fills its basin, with runoff and lake surface precipitation balanced by evaporation. Drainage area was estimated based on modern drainage divides and Eocene paleocurrent data (Smith et al., 2008). The isotopic compositions of lake water and precipitation were calculated from the average calcitic mudstone δ18O in the lower LaClede Bed, based on fractionation during calcite precipitation (O’Neill et al., 1969). The initial model was modified by capture of extrabasinal rivers with varying inflow rates and δ18O, with new inflows exactly balanced by outflow. Lake surface area and depth remained unchanged. Post-capture lake water composition was determined from the minimum calcitic mudstone δ18O in the upper LaClede Bed (Fig. 3). An example of a modern river that could account for the measured change in lake water δ18O is the Columbia River below Priest Rapids dam, where annual discharge is 106 × 10^9 m^3/yr and δ18O is –16.5‰ to –18‰ (Kendall and Coplen, 2001). Lower δ18O values in the river captured by Lake Gosiute may indicate a source area 2 km or more higher than the uplands surrounding the lake (cf. Chamberlain and Poage, 2000; Rowley et al., 2001), but the possibility of a different air mass composition in the source area cannot be excluded.

The δ18O shift in Lake Gosiute coincided with increased deposition of volcaniclastic sediments and an ~3x increase in net sediment accumulation rates (Smith et al., 2008). This detritus could have been derived from either the Absaroka or Challis volcanic provinces, but the latter appears more probable due to the occurrence of a similarly abrupt δ18O shift in the Sage Creek Basin in southwest Montana (Fig. 1). Kent-Corson et al. (2006) reported a δ18O shift from +15‰ to +17‰ in calcite cement from fluor volcaniclastic sandstone, dated as between 50 and 47 Ma for this same area. The larger magnitude and lower δ18O values of the shift in the Sage Creek Basin compared to the LaClede Bed are consistent with progressive downstream evaporation (especially from the lake surface) and addition of tributary streams. We propose that both records are related to a common upstream drainage reorganization that occurred in north-central Idaho.

Quartzite-bearing conglomerate units demonstrate a long history of rivers that flowed eastward from north-central Idaho, supporting our hypothesis (Fig. 1; Krause, 1985; Janecce et al., 2000; Sears and Ryan, 2003). Field evidence for eastward drainage continued through ca. 49 Ma, when paleovalleys in eastern Idaho and southwest Montana were filled with Challis volcanic rocks (Janecke et al., 2000; Fig. 1). Mapped geo-

1GSA Data Repository item 2008204, Appendix (isotopic data, mass balance model, model explanation, additional references, and Figure DR1), is available online at www.geosociety.org/pubs/ft2008.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 3. Mass-balance model of the effects of river capture on Lake Gosiute δ18O (%). Vertical axis shows measured δ18O of LaClede Bed mudstone; upper dashed line indicates average values in lower LaClede Bed, lower dashed line indicates minimum values in upper LaClede Bed. Horizontal axis indicates inflow rate of hypothetical river captured by Lake Gosiute; Yellowstone (MT—Montana) and Missouri (NE—Nebraska) Rivers are shown as illustrative examples (vertical gray lines). Curves represent mixing lines between Lake Gosiute and captured rivers of varying δ18O (labeled on curves), plotted as captured inflow versus resultant mudstone δ18O (see text and Data Repository [footnote 1] for further details). VSMOW—Vienna standard mean ocean water.

CONCLUSIONS

The results of this study demonstrate that large shifts in δ18O in authigenic mineral phases can occur without any clear evidence for regional climate change. The shift in Lake Gosiute isotopic composition is also too rapid (~100 k.y.) to have resulted from uplift. This study may support the inference that Laramide ranges had relatively low relief in the Eocene (cf. Fricke, 2003), at least compared to north-central Idaho. The drainage capture hypothesis suggests a ready test, based on inferred spill-over of Lake Gosiute into downstream Lake Uinta (Surdam and Stanley, 1980). Related shifts in δ18O or δ13C should be found within the time-equivalent Mahogany zone of the Piceance Creek and Uinta Basins (cf. Smith et al., 2008), although the former may be muted due to progressive downstream evaporation.

ACKNOWLEDGMENTS

We are grateful to P.G. DeCelles, M.L. Kent-Corson, C. Morrill, A. Mulch, J.W. Valley, and P. Wilf for discussions or data related to this paper. This paper benefited from constructive and illuminating reviews by H.C. Fricke, P.L. Koch, E.H. Gierlowski-Kordesch, and S.U. Janecke. Financial support was provided by ChevronTexaco, ConocoPhillips, the Donors of the Petroleum Research Fund of the American Chemical Society, and National Science Foundation grants EAR-0230123 and EAR-0114055.
REFERENCES CITED


Manuscript received 15 February 2008
Revised manuscript received 23 June 2008
Manuscript accepted 25 June 2008
Printed in USA