Volcanic biotite-sanidine 40Ar/39Ar age discordances reflect Ar partitioning and pre-eruption closure in biotite

John M. Hora1,2, Brad S. Singer1, Brian R. Jicha1, Brian L. Beard1, Clark M. Johnson1, Shan de Silva3, and Morgan Salisbury3

1Department of Geoscience, University of Wisconsin, 1215 W. Dayton Street, Madison, Wisconsin 53706, USA
2Geowissenschaftliches Zentrum der Universität Göttingen, Abteilung Geochemie, Goldschmidtstraße 1, 37077 Göttingen, Germany
3Department of Geosciences, Oregon State University, Corvallis, Oregon 97331-5506, USA

ABSTRACT

The 40Ar/39Ar radioisotope system is widely used to date eruption and cooling of volcanic tephra–marker horizons that commonly provide the only means of correlating and assigning numerical ages to stratigraphy in which they are contained. This chronometer bridges the gap between 14C and longer-lived isotopic systems that are too imprecise for dating young samples. However, 40Ar/39Ar ages obtained from coevally erupted biotite and sanidine do not always match. Here, we use an independent chronometer, 238U-230Th disequilibrium, to demonstrate that 40Ar/39Ar age disparity is not caused by differences in pre-eruption crystallization times. Our findings indicate that the presence of extraneous 40Ar in biotite, and its absence in sanidine, may result from violations of two assumptions implicit in 40Ar/39Ar geochronology on volcanic samples: (1) Prior to eruption, minerals are devoid of 40Ar due to rapid loss to an “infinite reservoir” such as the atmosphere, and (2) closure to volume diffusion is geologically instantaneous and coincident with eruption. We propose a mechanism whereby the presence of extraneous Ar in certain minerals is explained by the relative sequence of four events in a magmatic system: (1) crystallization, (2) mineral closure with respect to Ar diffusion, (3) isotopic equilibration of magmatic and atmospheric Ar, and (4) quenching of the system by eruption. These data have potentially far-reaching implications for studies that depend on geochronological data, necessitating re-evaluation of interpretations based solely on biotite with no independent age control, particularly in young samples where the effects are most pronounced.

INTRODUCTION

In the 40K-40Ar system, radiogenic daughter nuclide accumulation begins (i.e., diffusive loss of 40Ar ceases) at temperatures that are relatively low compared to other isotopic systems (e.g., Rb-Sr, Sm-Nd, U-series), thereby recording the cooling of volcanic units. 40Ar/39Ar ages have been used in this capacity to calibrate portions of the geologic time scale (Gradstein et al., 2004), correlate stratigraphy (Smith et al., 2006), delineate geomorphic polarity reversals (Singer et al., 2005), and constrain the pace of hominid evolution and migration (Leakey et al., 1998; Swisher et al., 1994) by providing numerical ages that bracket the geological events of interest. These ages are fundamental to our understanding of the recent geological and climatological evolution of Earth and life on it. Ar geochronology’s expanding role in dating Neogene events has largely been driven by analytical advances that allowed increasingly precise 40Ar/39Ar measurements to be made on young samples (Chen et al., 1996; Hu et al., 1994; Renne et al., 1997). To avoid flawed interpretations, evaluations of geological reasons behind apparently precise yet inaccurate data are needed, because systematic errors of constant absolute magnitude have increasing relative contribution when applied to younger samples.

Biotite and sanidine are commonly used K-rich mineral phases in K-Ar and 40Ar/39Ar dating. Sanidine is a proven chronometer, whereas biotite, despite continued use, is frequently complicated by extraneous 40Ar that manifests as anomalously old ages. Excessive Ar is present in numerous phases in varied geologic settings (e.g., metamorphic rocks)—and indeed some aspects of the present discussion (i.e., partitioning) may be more broadly applicable—however, here we focus on behavior of Ar in magmatic systems. Biotite and sanidine coexist in dacitic-rhyolitic magmas where this chronometer is commonly used and age discordance is prevalent (e.g., Bachmann et al., 2007; Spell and Harrison, 1993). Whereas previous studies have established that age discordance occurs, the number of independent analyses for a given phase within any single sample has been limited. Consequently, it has been difficult to gauge the magnitude and reproducibility of apparent age differences, or establish whether differences in pre-eruption crystal residence times can account for the discordance. Our goals here are to more thoroughly document biotite 40Ar/39Ar age anomalies, independently determine pre-eruption residence times, and offer a conceptual explanation.

40Ar/39Ar GEOCHRONOLOGY

Results

We present the largest currently available database of 40Ar/39Ar analyses on coeval volcanic biotite (148 single-crystal total fusions [TF] and 25 incremental heating experiments [IH] using both laser and furnace) and sanidine (251 TF and 53 laser IH) (Table DR1 in the GSA Data Repository3). All samples are from rhyolitic and dacitic magmas erupted from the Andean Central Volcanic Zone, range in age from 5.6 Ma to 40 ka, and represent a variety of eruptive styles and volumes (~800 km3 ignimbrites to 4 km3 domes): five units from the Altiplano-Puna volcanic complex (APVC) (de Silva, 1989), three units from Cerro Galan, and lava domes associated with Parinacota volcano (Hora et al., 2007). Incremental heating data indicate that sanidine typically yields younger and more precise ages than biotite (Fig. 1A), and biotite age determinations are not in agreement with one another (Fig. 1B). The biotite grains used in our study were large (typically >1 mm diameter, >200 µm thick; Fig. DR1 in the Data Repository), precluding 39Ar recoil-loss as a mechanism (Paine et al., 2006) for anomalously old biotite ages. The crystals are sourced from apparently nonaltered rocks in one of the driest environments on Earth, making parent isotope redistribution by weathering (Roberts et al., 2001) or the presence of intergrown alteration phases (Smith et al., 2008) unlikely causes of the excess age.

Interpretation

 Whereas Singer et al. (1998) resolved radiogenic, inherited, and trapped 40Ar components in a heterogeneous mixture of plagioclase phenocrysts and xenocrysts of contrasting age, biotites in general rarely exhibit saddle-shaped spectra (Lanphere and Dalrymple, 1976) associated with excess Ar (40Ar$_e$). More commonly, high-7 40Ar$_e$ is substantially homogenized with radiogenic 40Ar upon analysis (Renne, 1995). This situation is undetectable using the inverse isochron method, explaining why most of our biotite IH yield atmospheric 40Ar/39Ar intercepts. Furthermore, biotite, like other hydrous sheet silicates, is unstable during
in the context of these problems, and may mask true intracrystal Ar distributions. In this study, we use integrated and total fusion ages, as these are indicative of bulk Ar isotope composition. The magnitude of the age difference between coeval biotite and sanidine (Δage) is limited (<600 k.y.; Fig. 1C), implying an upper limit for the process responsible.

238U-230Th DISEQUILIBRIA

Previously, 40Ar/39Ar age differences were attributed to differing ages of the crystals themselves, i.e., differing pre-eruption residence times (Bachmann et al., 2007) that have been documented in large-volume silicic systems (Charlier and Zellmer, 2000; Reid et al., 1997). There is a paucity of crystal residence time data for small-volume (<10 km³) silicic systems like those that fed the Parinacota rhodacite domes, which show similar biotite-sanidine age discrepancies previously observed in large systems. Because of their youth, the Parinacota lava domes present a unique opportunity to both measure the magnitude of biotite age excess and independently determine crystallization ages of the phases involved via 238U-230Th disequilibrium (applicable to samples younger than 300 ka).

238U-230Th data (Table DR2) indicate that both biotite and sanidine predate eruption by up to ~120 k.y. (Fig. 2), but sanidine shows no evidence of this prior history in its 40Ar/39Ar age. This implies substantial differences in partitioning and/or degassing behavior for Ar among sanidine and biotite prior to eruption; consequently a valid model of excess age in biotite must also explain why equally old sanidine crystals are devoid of extraneous 40Ar.

PARTITIONING

Because most biotite 40Ar/39Ar ages are older than the sum of independently known eruption age and pre-eruption crystal residence time constrained by 238U-230Th disequilibria, in situ–produced inherited Ar (40ArI) cannot be the sole reason for discordance; externally sourced 40ArI must also be present. Noble gasses are normally thought to be very incompatible in minerals and melts (Kelley, 2002). Transit of Ar through a magmatic system is commonly viewed as unidirectional: (1) sourced in K-rich minerals, (2) followed by rapid diffusion into the surrounding melt, which approximates a zero-concentration boundary (Baxter et al., 2002), and (3) degassing to its ultimate sink, the atmosphere. This model is valid at low pressures during and after eruption and implies that Ar concentrations in minerals and the melt are low. Elevated partial pressure of Ar (PAr) invalidates the zero-concentration boundary approximation, and equilibrium concentrations of Ar in minerals are dictated by their relative solubilities: vapor phase >> melt >> biotite > sanidine (Kelley, 2002), all of which are proportional to \(p_\text{Ar} \) (Table DR3). Solubility in melt increases from basalt to rhyolite by approximately an order of magnitude (Carroll and Stolper, 1993), from <0.1 to 0.8 ppm/bar \(\text{Ar} \). Therefore, the capacity of melts to act as Ar transfer media between mineral sources and the atmospheric sink decreases with increasing SiO₂ content and pressure.

Because Ar solubility (\(S_\text{Ar} \)) is proportional to \(p_\text{Ar} \), the maximum amount of 40ArI, and consequently the predicted maximum age excess (\(t_\text{ex} \)), would, at equilibrium without chemical potential gradients caused by active degassing, depend on total pressure (\(P_\text{tot} \)), proportion of Ar in the ambient fluid/vapor phase (\(X_\text{Ar} \)), and its (steady-state) isotopic composition (\(40\text{Ar}/36\text{Ar} \)) as

\[
t_\text{ex,Bl} = \frac{1}{\lambda} \ln \left(1 + \frac{\lambda}{\lambda_+ + \lambda_-} \left(\frac{40\text{Ar}}{36\text{Ar}} \text{Ar} \right)_\text{Bl} - 295.5 \left(\frac{40\text{Ar}}{36\text{Ar}} \text{Ar} \right)_\text{tot} + 1 \right)
\]

Equation 1 derivation and values of decay constants (\(\lambda \)) are given in the Data Repository.
Incorporation of atmospheric 40Ar (i.e., 40Ar/39Ar = 295.5) does not result in excess age, because this component is subtracted during data processing. At magma storage depths, the impact of high p_{Ar} on age may be twofold: More Ar is partitioned into the minerals, and likelihood of complete atmospheric equilibration is decreased. Observed biotite age excesses require only modest pressures (1–3 km depth), with X_{Ar} approximately two times atmospheric concentrations (~2% of fluid phase), and can occur in magmas that have been substantially (though not completely) equilibrated with the atmosphere (~98% atmospheric Ar, 2% 40Arν; Table DR4).

If preserved, partitioned Ar in minerals would be present in all minerals, according to relative solubilities. Predicted age excesses would be approximately 3.8 times smaller in sanidine than in biotite due to lower solubility and higher stoichiometric K content. Because no age excesses are observed in sanidine, any mechanism that explains Δt_{age} must lock in 40Arν in biotite, while allowing it to escape from sanidine once the system becomes open to the atmosphere and reaches the low pressures of eruption.

Closure Temperature

As the system departs from equilibrium, the proportion of maximum partitioned 40Arν that is retained in biotite is dictated by kinetics and depends on the shifting balance between net partial loss and net partial retention of Ar (Fig. DR2). At high T, loss depends largely on the chemical potential difference of Ar between crystal and melt (i.e., degree of melt degassing), because diffusion is fast relative to radiogenic ingrowth. Alternating episodes of volatile degassing and recharge <1 yr prior to eruption are recorded by 40Arν in Mount St. Helens plagioclase (Layder and Gardner, 2001) and by hydroxyl zoning in apatite from Cerro Galan (Boyce and Hervig, 2008). Although H_2O is approximately one order of magnitude more soluble in silicate melts relative to CO$_2$ and Ar (Carroll and Stolper, 1993), the late loss of volatiles that is implied byapatite zoning (Boyce and Hervig, 2008) suggests that elevated p_{Ar} may persist until shortly prior to eruption.

As the magma cools, the temperature-dependent rate of diffusion determines the transition between loss and retention regimes. Closure temperature (T_c) is a function of phase-specific parameters that describe diffusivity, the size and shape of the diffusion domain, and cooling rate (dT/dt) (Dodson, 1973). Due to large differences in dt/dt found in nature, widely reported “plutonic” T_c are inappropriate for pre-eruption conditions of most volcanic systems, which accumulate, cool, and erupt on shorter time scales. In Figure 3A, we show the dependence of T_c on dt/dt (full results, including dependence on diffusion domain size, in Fig. DR3). For faster pre-eruption dt/dt, amphibole and biotite can partially close to diffusion at higher temperatures, similar to pre-eruption storage for rhyolites, whereas sanidine remains open, even at extremely fast cooling rates (Fig. 3A). We consider post-eruption cooling of a lava or tephra as geologically instantaneous, and only pre-eruption dt/dt enters into the determination of T_c. Determination of the time and 40Ar concentration at which the transition from partial loss to retention occurs is constrained by boundary conditions on degassing rate and timing, $T(t)$, and starting conditions in equation 1 (Fig. DR2). Regardless of the model used, retention of extraneous Ar in biotite, in contrast to the apparently efficient degassing of Ar in sanidine, implies that the relative order of four events is important in determining whether any phase (i.e., biotite and potentially hornblende) yields anomalously old ages: (1) crystallization, (2) closure with respect to volume diffusion, (3) degassing and equilibration with atmospheric Ar, and (4) quenching of the system by eruption (Fig. 3B). If the order of events changes, no age excess will be recorded by the mineral.

Thermometry from several ignimbrites from the Altiplano-Puna volcanic complex indicates storage and eruption at $T = T_{\text{eruption}}$ (Lindsay et al., 2001). For Parinacota domes, Fe-Ti oxide thermometry yields $T = 792 \pm 30 \, ^\circ \text{C}$ (Table DR5; Fig. DR4). If biotite and hornblende are closed or partially closed prior to eruption, some of the in situ–produced 40Arν and partitioned 40Arν may be “locked” in those phases; in contrast, sanidine begins accumulating 40Ar only after coincident eruption and closure (Fig. 3B). Because volcanic groundmass and glass are liquid at the time of eruption, these components behave similarly to sanidine in terms of rapid diffusive equilibration with the atmosphere and likewise give reliable eruption ages, although they are more susceptible to post-eruption alteration (hydration in particular) than sanidine.

Discussion

The magnitude of Δt_{age} appears to be determined by the degree of isotopic equilibration with the atmosphere before biotite closure, and whether eruption temperature is lower than biotite T_c. Consequently, extraneous 40Ar contents of 10^{-11} to 10^{-11} mol per gram of biotite limit age excess to $<600 \, \text{k.y.}$ (Fig. 4). Here we show that the discrepancy is not analytical; rather, instrumental precision has approached the level where relatively small systematic differences are detected among phases that compose magma. These data underscore the reliability of sanidine and glass analyses, but they should not be taken as a blanket indictment of 40Ar/39Ar geochronology on biotite; adverse effects may be undetectable in samples older than Cretaceous age, or where $T_{\text{eruption}} > T_{\text{c,biotite}}$. Rather, we urge caution and point to an instance where advances in analytical precision are outpacing our understanding of processes that are recorded in biotite and sanidine respectively. As techniques improve,
the region beyond analytical limits in Figure 4 will contract, and evaluation of inherent geological limitations on accuracy will be increasingly important. Our findings indicate that sanidine, in general, appears to behave as the common assumptions suggest. Conversely, biotites may retain evidence of pre-eruption conditions that complicate interpretations of their apparent ages.

ACKNOWLEDGMENTS

We thank the Oregon State University Radiation Center for sample irradiation, Sue Kay for supplying Cerro Galan samples, and John Fournelle for assistance with Fe-Ti oxide thermometry. This work was supported by National Science Foundation grant EAR-0538159 to Singer; grants EAR-0538206 and EAR-0710545 to de Silva; and Geological Society of America, Sigma Xi, and Weeks grants to Hora. We thank editor William Collins, Paul Renne, and an anonymous reviewer for comments that improved this manuscript.

REFERENCES CITED

Lindsay, J.M., Schmitt, A.K., Trumbull, R.B., de Silva, S.L., Siebel, W., and Emmrenner, R., 2001, Magmatic evolution of the La Pacana caldera system, Central Andes, Chile: Compositiona-