Numbers in parentheses indicate relevant research award(s) in Research Funding History

Johnson, C. M., B. L. Beard, C. Klein, N. J. Beukes, and E. E. Roden. 2008. Iron isotopes constrain biologic and abiologic processes in banded ironformation genesis. Geochim. Cosmochim. Acta 72:151-169. (21) (PDF)

Roden, E. E. 2008. Microbiological controls on geochemical kinetics 1: Fundamentals and case study on microbial Fe(III) reduction. In S. L. Brantley, J. Kubicki, and A. F. White (eds.). Kinetics of Water-Rock Interactions, pp. 335-415. Springer, New York. (PDF)

Roden, E. E. 2008. Microbiological controls on geochemical kinetics 2: Case study on microbial oxidation of metal sulfide minerals and future prospects. In S. L. Brantley, J. Kubicki, and A. F. White (eds.). Kinetics of Water-Rock Interactions, pp. 417-467. Springer, New York. (PDF)

Roden, E. E., and D. Emerson. 2007. Microbial metal cycling in aquatic environments. In C. J. Hurst, D. Lipson, R. Crawford, J. Garland, A. Mills, and L. D. Stezenbach (eds.). Manual of Environmental Microbiology, 3rd Edition, pp. 540-562. American Society for Microbiology, Washington, DC.

Crosby, H.A., C.M. Johnson, E.E. Roden, and B.L. Beard. 2007. The mechanisms
of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology. 5:169-189. (21) (PDF)

Burgos, W. D., J. M. Senko, B. A. Dempsey, E. E. Roden, J. J. Stone, K. M. Kenmer, and S. D. Kelly. 2007. Soil humic acid decreases biological uranium(VI) reduction by Shewanella putrefaciens CN32. Environ. Engin. Sci. 24:755-761. (12) (PDF)

Cheng, T., M. O. Barnett, E. E. Roden, and J. L. Zhunag. 2007. Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column: An experimental study. Chemosphere 68:1218-1223. (11) (PDF)

Phillippi, J. M., V. A. Loganathan, M. J. McIndoe, M. O. Barnett, T. P. Clement, and E. E. Roden. 2007. Theoretical solid/solution ratio effects on adsorption and transport: Uranium(VI) and carbonate. Soil Sci. Soc. Am. J.
71:329-335. (11) (PDF)

Boyanov, M. I., E. J. O’Loughlin, E. E. Roden, J. B. Fein, and K. M. Kemner. 2007. Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: the influence of speciation on uranyl reduction studies by titration and XAFS. Geochim. Cosmochim. Acta 71:1898-1912. (12) (PDF)

Romero-Gonzalez, M. R., T. Cheng, M. O. Barnett, and E. E. Roden. 2007. Surface complexation modeling of the effects of phosphate on uranium(VI) adsorption. Radiochimica Acta 95:251-259. (11) (PDF)

Roden, E. E. 2006. Geochemical and microbiological controls on dissimilatory iron reduction. C.R. Geosci. 338:456-467. (11, 12) (PDF)

Chandler D.P., Jarrell A.E., Roden E.R., Golova J., Chernov B., Schipma M.J., Peacock A.D., and Long P.E. 2006. Suspension array analysis of 16S rRNA from Fe- and SO42–reducing bacteria in uranium-contaminated sediments undergoing bioremediation.  Appl. Environ. Microbiol. 72: 4672-4687. (19) (PDF)

Scheibe, T.D., Fang, Y., Murray, C.J., Roden, E.E., Chen, J., Chien, Y.J, Brooks, S.C., Hubbard, S.S. 2006. Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer. Geosphere. 2: 220-235 (12, 14) (PDF)

Cheng, T., M.O. Barnett, E.E. Roden, and J. Zhuang. 2006. Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications. Environ. Sci.Technol. 40: 3243-3247. (PDF)

Weber, K.A. P.F. Churchill, K.K. Kukkadapu, and E.E. Roden. 2006. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. doi:10.1111/j.1462-2920.2005.00873x (7) (PDF)

Crosby, H.A., C.M. Johnson, E.E. Roden, and B.L. Beard. Coupled Fe(II)-Fe(III) electron/atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. 2005. Environ. Sci. Technol. 39:6698-6704. (13) (PDF)

Jeon, B.H., S.D. Kelly, K.M. Kemner, M.O. Barnett, W.D. Burgos, B.A. Dempsey, E.E. Roden. 2005. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic iron(III) oxides. Environ. Sci. Technol. 39:5642-5649 (11, 12) (PDF)

Warner, K.A., J.-C. J. Bonzongo, E.E. Roden, M.G. Ward, A.C. Green, I. Chaubey, W.B. Lyons, and D.A. Arrington. 2005. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. Sci. Tot. Environ. 347:187-207. (8) (PDF)

Roden, E.E. and T.D. Scheibe. 2005. Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments. Chemosphere. 59:617-628. (14) (PDF)

Johnson, C.M., E.E. Roden, S.A. Welch, and B.L. Beard. 2005. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta. 69:963-993. (13) (PDF)

Chen, J., S. Hubbard, Y. Rubin, C. Murray, E. Roden, and E. Majer. 2004. Geochemical characterization using geophysical data and Markov Chain Monte Carlo methods: A case study at the South Oyster bacterial transport site in Virginia. Wat. Resour. Res. 40:W12412. (10) (PDF)

Cheng, T., M.O. Barnett, E.E. Roden, and J. Zhuang. 2004. The effects of phosphate on uranium(VI) adsorption to goethite-coated sand. Environ. Sci.Technol. 38: 3059-6065. (11) (PDF)

Johnson, C.M., B. Beard, E. Roden, D. Newman, K. Nealson. 2004. Isotopic constraints on biogeochemical cycling of Fe. pp. 409-427 In Johnson, C.M., B.L. Beard, and F. Albarede (Eds.) Geochemistry of non-traditional stable isotopes, Reviews in Mineralogy and Geochemistry, Vol. 55, Mineralogical Society of Americal/Geochemical Society. (PDF)

Jeon, B.H., S.D. Kelly, K.M. Kemner, M.O. Barnett, W.D. Burgos, B.A. Dempsey, E.E. Roden. 2004. Microbial reduction of U(VI) at the solid-water interface. Environ. Sci. Technol. 38:5649-5655. (11, 12) (PDF)

Roden, E.E. 2004. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics. Geochim. Cosmichim. Acta. 68:3205-3216. (5, 11, 12) (PDF)

Roden, E.E., D. Sobolev, B. Glazer, and G.W. Luther. 2004. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiol. J. 21:379-391. (1, 9, 13) (PDF)

Jeon, B.H., B.A. Dempsey, W.D. Burgos, R.A. Royer and E.E. Roden. 2004. Modeling the sorption kinetics of divalent metals ions to hematite. Wat. Res. 38:2499-2504. (12) (PDF)

Wildung, R.E., S.W. Li, C.J. Murray, K.M. Krupka, Y. Xie, N.J. Hess, and E.E. Roden. 2004. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. FEMS Microb. Ecol. 49:151-162. (10) (PDF)

Roden, E.E. 2004. Analysis of FeIII oxide reactivity toward long-term bacterial vs. chemical reduction, pp. 1227-1230 In Wanty, R.B. and R.R. Seal II (Eds), Proceedings of the 11th International Symposium on Water-Rock Interaction. AA Balkema Publishers, New York. (5, 11, 12) (PDF)

Sobolev, D. and E.E. Roden. 2004. Characterization of a chemolithoautotrophic Fe(II)-oxidizing b-proteobacterium isolated from freshwater wetland sediments. Geomicrobiol. J. 21:1-10. (1, 9) (PDF)

Roden, E.E. 2003. Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms. Appl. Environ. Microbiol. 59:5702-5706. (1, 11, 12) (PDF)

Roden, E.E. and R.G. Wetzel. 2003. Competition between Fe(III)-reducing and methanogenic bacterial for acetate in iron-rich freshwater wetland sediments. Microb. Ecol. 45:252-258. (1) (PDF)

Roden, E.E. 2003. Fe(III) oxide reactivity toward biological versus chemical reduction. Environ. Sci. Technol. 37:1319-1324. (5, 11, 12) (PDF)

Warner, K.A., E.E. Roden, and J.C. Bonzongo. Microbial mercury transformations in anoxic freshwater sediments under iron-reducing and other electron accepting conditions. Environ. Sci. Technol. 37:2159-2165. (8) (PDF)

Sobolev, D., and E.E. Roden. 2002. Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Anton. van Leeuw. 81:587-597. (1, 9, 13) (PDF)

Roden, E.E., M.R. Leonardo, and F.G. Ferris. 2002. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta. 66:2823-2839. (6) (PDF)

Roden, E.E. and M.M. Urrutia. 2002. Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiol. J. 19:209-251. (5, 11) (PDF)

Roden, E.E. and R.G. Wetzel. 2002. Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnol. Oceanogr. 47:198-211. (1, 5) (PDF)

Weber, K.A., F.W. Picardal, and E.E. Roden. 2001. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environ. Sci. Technol. 35:1644-1650. (7) (PDF)

Sobolev, D. and E.E. Roden. 2001. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen. Appl. Environ. Microbiol. 67:1328-1334. (1, 9) (PDF)

Chaubey, I., K.A. Warner, G.M. Ward, and E.E. Roden. 2001. Statistical analysis of land use effect on in-stream nutrient concentrations, p. 33-38 In Proc. Mini-Symposium on Statistical Methods in Hydrology, P.K. Haan and R.D. Harmel (Eds.). ASAE, St. Joseph, MI.

Jackson, C.R., P.F. Churchill, and E.E. Roden. 2000. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology. 82:555-566. (9)

Roden, E.E., M.M. Urrutia, and C.J. Mann. 2000. Bacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactors. Appl. Environ. Microbiol. 66:1062-1065. (5) (PDF)

Jackson, C.R. , E.E. Roden, and P.F. Churchill. 2000. Denaturing gradient gel electrophoresis can fail to separate 16S rDNA fragments with multiple base differences. Mol. Biol. Today. 1:15-17. (9) (PDF)

Parmar, N., L.A. Warren, E.E. Roden, and F.G. Ferris. 2000. Solid phase capture of strontium by the iron reducing bacterium Shewanella alga strain BrY. Chem. Geol. 169:281-288. (6) (PDF)

Roden, E.E. and M.M. Urrutia. 1999. Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides. Envir. Sci. Technol. 33:1847-1853. (5) (PDF)

Urrutia, M.M., E.E. Roden, and J.M. Zachara. 1999. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline Fe(III) oxides. Environ. Sci. Technol. 33:4022-4028. (3, 5) (PDF)

Small, T.D. , L.A. Warren, E.E. Roden, and F.G. Ferris. 1999. Sorption of strontium by bacteria, Fe(III) oxide, and bacteria-Fe(III) oxide composites. Environ. Sci. Technol. 33:4465-4470. (6) (PDF)

Jackson, C.R., E.E. Roden, and P.F. Churchill. 1998. Changes in bacterial species composition in enrichment cultures with various dilutions of inoculum as monitored by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol.. 64:5046-5048. (PDF)

Urrutia, M.M., E.E. Roden, J.K. Fredrickson, and J.M. Zachara. 1998. Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron-reducing bacterium Shewanella alga. Geomicrobiol. J. 15:269-291. (3, 5) (PDF)

Coates, J.D., D.J. Ellis, E.L. Blunt-Harris, C.V. Gaw, E.E. Roden, and D.R. Lovley. 1998. Recovery of humics-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64:1504-1509. (1) (PDF)

Howell, J.R., Donahoe, R.J., Roden, E.E. and Ferris, F.G. 1998. Effects of microbial iron oxide reduction on pH and alkalinity in anaerobic bicarbonate-buffered media: implications for metal mobility. Mineral. Mag. 62A (2):657-658. (6)

Roden, E.E. and J.W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction vs. iron-sulfide formation. Arch. Hydrobiol. 139:347-378. (2)

Jackson, C.R., J.P. Harper, D. Willoughby, E.E. Roden, and P.F. Churchill. 1997. A simple, efficient method for separation of humic substances and DNA in environmental samples. Appl. Environ. Microbiol. 63:4993-4995. (PDF)

Roden, E.E. and R.G. Wetzel. 1996. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41:1733-1748. (1) (PDF)

Roden, E.E. and J.M. Zachara. 1996. Microbial reduction of crystalline Fe(III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30:1618-1628. (3) (PDF)

Roden, E.E., J.H. Tuttle, W.R. Boynton, and W.M. Kemp. 1996. Carbon cycling in mesohaline Chesapeake Bay sediments 2. Kinetics of particulate and dissolved organic carbon turnover. J. Mar. Res. 54:343-383.

Roden, E.E., J.H. Tuttle, W.R. Boynton, and W.M. Kemp. 1995. Carbon cycling in mesohaline Chesapeake Bay sediments 1. POC deposition rates and mineralization pathways. J. Mar. Res. 53:799-819.

Roden, E.E. and D.R. Lovley. 1993. Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments. Geomicrobiol. J. 11:49-56.

Roden, E.E. and D.R. Lovely. 1993. Dissimilatory Fe(III) reduction by the marine microorganism, Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59:734-742.

Roden, E.E. and J.H. Tuttle. 1993. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments. Mar. Ecol. Prog. Ser. 93:101-118.

Roden, E.E. and J.H. Tuttle. 1993. Inorganic sulfur turnover in oligohaline estuarine sediments. Biogeochemistry. 22:81-105.

Lovley, D.R., E.E. Roden, E.J.P. Phillips, and J.C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113:41-53.

Phillips, E.J.P., D.R. Lovley, and E.E. Roden. 1993. Non-microbially reducible Fe(III) in sediments is not in mixed Fe(III)-Fe(II) oxides. Appl. Environ. Microbiol. 59:2727-2729.

Roden, E.E. and J.H. Tuttle. 1992. Sulfide release from estuarine sediments underlying anoxic bottom water. Limnol. Oceanogr. 37:725-738.